Traffic Management: State of the art, current trends and future perspectives

Ben Immers - TrafficQuest

Outline presentation

- Why traffic management?
- How does it work?
- Solutions Measures
- State of the Art
- Current Trends
- Future Perspectives
- Research Agenda
- Analogies for TM

Why Traffic Management?

- Reducing delays;
- Improving throughput
- Improving travel time reliability
- Improving traffic safety

- Improving sustainability of transport system
- But..... Sometimes other solutions (other than TM) may be preferred!

3 level approach

- Traffic management
- Mobility management
- Infrastructure and activity management

Benefits

Many types of intelligent traffic systems offer a superior benefit-to-cost ratio than the physical expansion of roads

Lower range

Comparison of returns for different road investments Average benefit-to-cost ratios

"Traditional" road capacity

Electronic freight management system

Dynamic curve warning

Commercial vehicle information systems and networks

Maintenance decision support system

Intelligent traffic management

National real-time traffic information system

Road weather management technologies

Service patrols (traffic incident management)

Integrated corridor management

Optimized traffic signals

SOURCE: Intelligent transportation systems, Capitol Research, Council of State Governments, April 2010; Transport for London, 2007; Intelligent transportation systems benefits, costs, deployment, and lessons learned desk reference: 2011 update, US Department of Transportation, September 2011; Urban mobility plan, Seattle Department of Transportation, January 2008; McKinsey Global Institute analysis

What can go wrong?

Underlying processes that cause congestion

- Capacity drop (14% 30% reduction of capacity)
- Moving shockwaves
- Sub-optimal route choice
- Spillback

How does TM work?

Basic types of intervention (solutions)

- Increase throughput
- Distribute traffic in an effective way across the network
- Regulate the inflow of traffic
- Prevent spillbacks
- Control the speed
- Enforcement
- Prioritise specific user groups

Measures in relation to types of intervention

MAIN SOLUTIONS	RAMP METER	TRAVELER Information	PEAK HOUR Shoulder lanes	DYNAMIC Separation of Through and Local Traffic
INCREASE Throughput	Effective capa- city increase by postponing queue formation	-	Increase capacity by opening an extra lane during peak periods (shoulder and/or re-striping)	Increase in ca- pacity by decre- asing weaving movements
EFFECTIVELY DISTRIBUTE TRAFFIC	Reduce cut- through traffic (rat running)	Inform drivers about routes with residual capacity	-	-
REGULATE INFLOW	Regulate ente- ring traffic to main roadway	Inform drivers which on-ramp to use if options are available	-	-
PREVENT Spillbacks	Prevent queue spillback on the main roadway to an upstream exit	Inform drivers to choose exit if options are avai- lable	Prevent spillback by buffering traffic	Prevent spillback by channeling exiting traffic to dedicated lanes

State of the Art

- Long history (London 1868 Eindhoven 1968)
- Wide range of measures
 - Roadside
 - In-car
- Traffic data
 - Public National Data Warehouse
 - Private GPS, probe, etc.
- Stakeholders (public private)
 - Societal interests
 - Individual or commercial interests
- Cooperation and coordination (network-wide)

Current trends

- Societal trends e.g. individualization, societal relevance, aging, generation Y, virtual society/mobility, flexibility of demand
- Organizational trends (PPP, DBFMO-contracts, DITCM), internationalization e.g. EC ITS-action plan, ITS Directive
- Economic trends e.g. economic crisis
- Technical developments e.g. traffic information systems, driver assistance systems, cooperative systems, incident and event management - penetration rate, standardization

Interrelationships

Possible effects

- Shifts in traffic demand (time and space)
- Changes in mobility objectives
 - More focus on sustainability
- Increasing effectiveness of traffic management (more advanced measures)
- But: Road user is also better informed less easy to influence
 → Reconciliation individual and social (governmental) interests
- And: Better cooperation public-private partnerships
- → Opportunities for effective deployment of traffic management will increase

Perspectives for the Future

- Primary task: demand-supply alignment
 - Regular situations
 - Non-recurrent and unexpected situations
- Ability to respond to rapidly changing situations; rapidly deployable measures
- Pro-active approach
- High degree of instrumentation to guide traffic
- Well established coordination
- → TM needs to be flexible, coordinated, cooperative, and pro-active
- \rightarrow Requires close cooperation between
 - Road authorities
 - Private sector partners
 - Research/education institutes

Optimal network performance thanks to collaboration between stakeholders

Knowledge (understanding) traffic

Knowledge (understanding) traffic

There is still work to do!

Topics that need to be addressed:

- Flexibility in supply and demand
- Road pricing
- More cooperation and coordination: network-wide Traffic Management
- Pro-active traffic management
- Optimization for multiple policy goals
- Integrated approach
- Organization (Public Private)
- Training and education
- Basic facilities (architecture, monitoring)
- Evaluation

Dynamic Road Pricing

Road pricing is **HOT**

Future Research Agenda

Focus on:

Strategic – policy oriented research Operational – problem oriented research Knowledge development Knowledge application

Selection of TQ research topics

- DITCM (cooperation and evaluation)
- Modelling human behaviour in traffic models
- PPA (Field trial Amsterdam)
- Analogies (controlling versus self organisation (informing))

- What is happening elsewhere in the world scanning tours
- How are flows managed in other systems Analogies
 - Swarms of birds
 - Distribution logistics
 - Communication networks
 - Electronic payment systems
 - Water management
 - Electricity networks
 - The brain

- Self-organization versus dedicated (hierarchical) control?
- To what extent are we dealing with a stratified (layered) system ?
- How are robustness and reliability of the system ensured?

Preliminary results

Many similarities, but also clear differences, such as:

- Much more control in some systems
- Close attention to the robustness of the system (redundancy)
- Clear agreements between stakeholders
- Various forms of self-organization (with mutual alignment between a limited number of neighboring entities)

Next steps:

- Make a design a traffic management system based on the management and control principles deployed in the analogous systems
- What does that mean for the traffic system? Will or could it work? Are the goals still achievable? Is it acceptable for the traveler? etc.

Interesting concepts

- Highly controlled: Slot management
- Complete self-organisation (information driven)
- Hybrid forms

 \rightarrow new ideas for future traffic management

Contact

Ben Immers TrafficQuest E-mail: ben.immers@gmail.com

TrafficQuest is een samenwerkingsverband van

Rijkswaterstaat Ministerie van Infrastructuur en Milieu