Future Traffic Management Concepts and Challenges

Prof. Markos Papageorgiou

Dynamic Systems and Simulation Laboratory, Technical University of Crete, Chania, Greece

1. WHY TRAFFIC MANAGEMENT (TM)?

- Vehicles share the road infrastructure among them, as well as with other (vulnerable) users: TM needed
- Few vehicles: Static TM for safety
- Many vehicles: Dynamic TM for efficiency
- Too many vehicles (congestion): Dynamic TM for protection from degradation

Network Fundamental Diagram (NFD)

(Fahri, 2008; Geroliminis & Daganzo, 2008; Helbing 2009)

Basic elements of an automatic control system

Current TM Systems (ITS)

- Process: vehicle flow
- Sensors: spot sensors
- Communications: wired
- Computing: central, decentralised, hierarchical
- Actuators: road-side

Future TM Systems (C-ITS)

- Process: enhanced-capability vehicles
- Sensors: vehicle-based
- Communications: wireless, V2V, V2I, I2V
- Computing: central, massively decentralised, hierarchical
- Actuators: in-vehicle

Implications/Exploitation for traffic flow efficiency?

2. MAIN CURRENT TRAFFIC MANAGEMENT TOOLS ...

(a) Motorways

dn

- Ramp Metering: Few successful installations; Most (even metropolitan) motorways uncontrolled
- Variable Speed Limits: Great for safety; No efficiency improvement due to simplistic control strategies

Current Status: No capacity flow anywhere/anytime on uncontrolled (or badly controlled) motorways.

(b) Urban Road Networks

- Traffic Signal Control: Good progress (but also possible improvements) in nonsaturated conditions; No operational system for oversaturated conditions
- Public Transport Priority: Very significant advances/ implementations

Current Status: Reasonable performance but strong degradation when network overloaded.

(c) Driver Information and Route guidance

- Variable Message Signs: Many installations
- On-board navigators: Infancy period

Current Status: Virtually no predictive systems; Serious route guidance strategies needed with increasing penetration

(d) Integrated Traffic Control

- Urban/Motorway
- Within Motorway
- Guidance/Control

Current Status: Virtually no integration/synergy

... AND DIFFICULTIES

(a) Organizational

- Reduced TM awareness
- Reduced TM funding
- Research-Practice gap

(b) Operational

- Sensor density/type/reliability/maintenance
- Control strategy advances/deployment
- Closed off-the-shelf systems
- Difficult field comparison
- Integrated traffic control

3. EMERGING VACS (Vehicle Automation and Communication Systems)

- Significant efforts: Automotive industry, Research community, Government agencies
- Mostly vehicle-centric
- Implications/Exploitation for traffic flow efficiency?
- TRAMAN21: TRAffic MANagement for the 21st Century (ERC Advanced Investigator Grant) <u>http://www.traman21.tuc.gr/</u>
- Review identified 88 different VACS
 - 46 safety related
 - 12 urban traffic
 - 30 motorway traffic

4. POTENTIAL CONTRIBUTIONS OF VACS

- Traffic safety: Great benefits
- V2V and V2I communication: What to communicate?
- Abundant/new information (e.g. mobile sensors, OD information): How to use it with benefit?
- Increased capacity (e.g. headway control, platooning, lane changing): Under what conditions?
- On-board, in-vehicle actuators (e.g. route guidance, speed limits): Best usage?
- Increased control granularity (e.g. by lane, by destination, flow splitting): Increased opportunities
- Efficient lane assignment
- Improved incident detection and management

... AND RELATED CHALLENGES

- Modified traffic flow characteristics: New/extended traffic flow models
- New/extended control strategies: Exploit the new opportunities
- Very large-scale systems: Design, actors, reliability, vulnerability, security
- Driver involvement: What role? Acceptance?
- Penetration level: Moving target
- Infrastructure investment: Chicken or egg?
- New operators role/generation?
- Long, evolutionary and uncertain process; contradictory development scenarios
- Legal aspects, liability, privacy, standardisation, ...

5. THE WAY FORWARD

- Connect VACS and TM communities (no need to re-discover the wheel)
- VACS by function: Potential TM applications?
- TM by tool: Potentially useful VACS functions?
- Co-evolution
- TM continues to be vital while VACS are emerging

TRAMAN21 Workshop 2013: http://www.traman21-workshop2013.tuc.gr/

