

Behavioural models or experiments? Mind the gap

innovation

Marieke Martens TNO & University of Twente

Why do we need traffic models?

Predict and control our nr 1 traffic problem

- Facilitate shifts in route choice by providing traffic information
- Ex-ante evaluation of effects of new measures
 - New roadway signs
 - ADAS, such as ACC
 - Road infrastructure: narrow lanes, additional lanes, dynamic lanes
 - New traffic laws (trucks in right lane)

Example...

Bad example: Decision making Good example: what happens if....

Peak hour traffic lanes

Effects on traffic flow < than models predicted

innovation for life

Green wave advice

First traffic model estimations: good results! Assumption: 100% obedience Difference in design, algorithms behind advice, type of driver, regions??

innovation for life

Modelling behaviour starts with...

What is driving behaviour?

Driving is a complicated multi-level task

- Steering behaviour
- Using brake and gas pedal
- Giving priority
- Check mirrors
- Keeping distance to lead vehicles
- Attend to road signs and traffic lights
- Making route choices
- ...

Infrastructure matters

for life

Driving Task Hierarchy

- Strategic level
 - Route planning and route guidance (minutes-hours)
- Manoeuvring level
 - Interaction with road and other road users (seconds minutes)
- Control level
 - Controlling speed and lane keeping (1/10 seconds seconds)

Car driving not 1 task

- Continuous task (lane keeping)
- Planned actions (overtaking, turning)
- Sudden actions (braking lead vehicle)
- Changes in road environment (work zone)
- > Use of in-vehicle system (navigation)

Types of models

- Route choice models (strategic level)
- Lane chance model (manoeuvre level)
- Acceleration model (control level)

Microscopic traffic model:

Translate individual behaviour to traffic flow parameters

Driver is control loop

Personal characteristics, workload, fatigue?

Driver modeling workshops

> Transportation Research Board

> HF workshop Driver Model: Design, Integration, Applications.

> ISPRA workshop

Cacciabuie, P.Carlo (Ed.). (2007). Modelling Driver Behaviour in Automotive Environments. Critical issues in Driver Interactions with Intelligent Transport Systems. London: Springer Verlag.

innovation

> HUMANIST workshop

Input for traffic flow models

Microscopic traffic flow models need valid and calibrated driver models to test/assess/evaluate road design/traffic management/ITS measures in terms of traffic throughput, safety and environment

> Time series data collected by an instrumented vehicle, and its use in the validation of the *car following* performance of a fuzzy logic based car following model:

innovation

Wu, J., Brackstone, M., & Mcdonald, M. (2003). The validation of a microscopic simulation model: a methodological case study. *Transportation Research Part* C - Emerging Technologies, 11 (6), 463-479.

> What cues do drivers use?

- Andersen, G.J., & Sauer, C.W. (2007). Optical information for car following: The driving by visual angle (DVA) model. *Human Factors, 49* (5), 878-896.
 Salvucci, D.D., & Gray, R. (2004). A two-point visual control model of steering. Perception, 33 (10), 1233-1248.
- Horst, A.R.A. van der (2007).. Time-related measures for modelling risk in driver behaviour.In: Cacciabule, P.Carlo (Ed.). (2007). Modelling Driver Behaviour in Automotive Environments. Critical issues in Driver Interactions with Intelligent Transport Systems. London: Springer Verlag.
- > Variability between drivers (cross-cultural differences, driving styles, experience, etc.)
- Ozkan, T., Lajunen, T., Chliaoutakis, J.E., Parker, D., & Summala, H. (2006). Cross-cultural differences in driving behaviours: A comparison of six countries. Transportation Research Part F Traffic Psychology and Behaviour, 9 (3), 227-242.
- Farzaneh, M., & Rakha, H. (2006). Impact of differences in driver-desired speed on steady-state traffic stream behavior. Transportation Research Record 1965, 142-151.
- > Salvucci, D.D., Chavez, A.K., & Lee, F.J. (2004). Modeling effects of age in complex tasks: A case study in driving. proceedings of the 26th Annual Conference of the Cognitive Science Society Chicago, USA: August 4-7 2004. (pp. 1197-1202).

Design is important

How do drivers respond to changes in speed limits?

- Large scale field studies
- Various locations
- Video data, loop data, interviews...

Results show that behaviour depends upon:

- Reason for the speed limit
- Credibility of the speed limit
- Electronic speed indication
- Dynamic or static signs
- Location of sign and number of repetitions
- Presence of enforcement
- Additional warnings for enforcement
- Etc.

New speed limit

How do drivers respond to an increased limit to 130 km/h?

What about new measures?

Driving simulator

Is driving simulator always the solution?

MIND THE GAP:

Models are not valid

Experimental studies are not valid

People are attentive

They are confronted with design A and B under specific conditions

But what about LT effects?

What about behavioural adaptation?

What about interaction between users and non-users?

What explains this behaviour?

Mind the gap – bridge the gap

Using behavioural variables, such as obedience (0-100%) Using models as a first scan about potential effects Use model for exploring trends and directions Use models to make explicit what is unknown Use pilots and controlled to studies for the unknown

Overall driver model?

- Not realistic:
- Kantowitz et al. (2005)
 - > Human Factors Cognitive Models have highest priority
- Efforts needed to develop computational driver model estimated at 12.000.000,- \$ (12 year time)

- Think in terms of:
- > partial driver models
- > for specific subtasks
- > that fit into a general framework

Driver Model Library is a cross-platform plug-in Provides driver behaviour and decision making for traffic simulations

Based on behavioural framework: CHAOS (Capability-based Human-performance Architecture for Operational Simulations)

TNO innovation for life

Driver Model Library for:

- > Microscopic simulation (e.g. individual driver behaviour at intersections)
- Network simulation

Driver Model Library

strategic manoeuvring control perception INFORMATION skill-based PERFORMANCE rule-based knowledge-based

- > Driving tasks arranged in a hierarchy
 -) as demons (also stressors)
 - > competing in pandemonium for resources

Pandemonium theory (Selfridge, 1959: Pandemonium: a paradigm for learning) Agents (demons) represent behaviour chunks Demons compete over limited resources (=capabilities) Monitor Interpret situation Use resources to (re)act accordingly

CHAOS Behaviour Model

- Capability-based Human-performance Architecture for Operational Simulations
- Multi-agent system
 - Pandemonium theory (Selfridge, 1959: Pandemonium: a paradigm for learning)
 - > Agents (*demons*) represent *behaviour chunks*
 - Demons compete over limited resources (=capabilities)
 - Monitor
 - Interpret situation
 - > Use resources to (re)act accordingly

CHAOS

- > Behaviour demons
- > Stress demons
- Resources

o innovation for life

Т

Distraction in the DML

> Non-driving behaviour:

> Also modelled as demons, to hijack some of the resources

innovation

For example...

- Route planning demon uses foveal visual attention and most of peripheral attention resources
- > Thus, external visual stimuli are ignored
- Distraction outside: foveal visual attention is used; peripheral attention resources remain available.

Conclusions

- > Driver behaviour is adaptive, but what criteria are used?
- Having predictive and valid models for driver behaviour remains a challenge
 - > Degraded control performance; looked-but-failed-to-see; readiness to respond.

- We believe in the CHAOS framework: proven approach for modelling complex human behaviour in various domains.
- > Enabling tool for advice, policy and consultancy
- > Tool for first estimates of FOT applications and new measures
- > Understand unknown behavioural parameters

TNO innovation for life

Next steps (1)

- Mind the gap bridge the gap:
 - Models are not valid (missing links & identify possible trends)
 - Controlled studies are not valid (study in-depth parameters and new measures)
 - > FOTs and ND studies: we do not know everything
- > Conducting experimental studies with deeper understanding:
 - > Effect of mobile phone use on driving speed
 - > Effect of underlying mechanism of using phone:
 - Cognitive mechanisms
 - > What resources are being used?
 - > Via what mechanisms is driving behaviour influenced?

Next steps (2)

- > Learn more from one study...
 - > Effect of VMS on speed
 - Reported is speed, SD speed and headway
- > Effect of age on lane change performance?
 - > Same experiment!

- > Joining forces and exchange information:
 - > Standardise behavioural measures (Paul Green, UMTRI)

- > Understand the gap
- > Data, data, data.....